2 General Electrotechnical Formulae

2.1 Electrotechnical symbols as per DIN 1304 Part 1

Table 2-1

Mathematical symbols for electrical quantities (general)

Symbol	Quantity	SI unit
Q	quantity of electricity, electric charge	С
E	electric field strength	V/m
D	electric flux density, electric displacement	C/m ²
U	electric potential difference	V
φ	electric potential	V
E	permittivity, dielectric constant	F/m
? 0	electric field constant, $\varepsilon_0 = 0.885419 \cdot 10^{-11} \text{ F/m}$	F/m
r	relative permittivity	1
Ċ	electric capacitance	F
	electric current	Α
J	electric current density	A/m^2
:, γ, σ	specific electric conductivity	S/m
	specific electric resistance	Ω m
G	electric conductance	S
7	electric resistance	Ω
9	electromotive force	Α

Table 2-2

Mathematical symbols for magnetic quantities (general)

Symbol	Quantity -	SI unit
$\overline{\Phi}$	magnetic flux	Wb
В	magnetic induction	Т
Н	magnetic field strength	A/m
V	magnetomotive force	Α
φ	magnetic potential	Α
μ	permeability	H/m
μ_{o}	absolute permeability, $\mu_0 = 4 \pi \cdot 10^{-7} \cdot \text{H/m}$	H/m
μ_{r}	relative permeability	1
Ĺ	inductance	Н
L_{mn}	mutual inductance	Н

Table 2-3

Mathematical symbols for alternating-current quantities and network quantities

Symbol	Quantity	SI unit
S	apparent power	W, VA
P	active power	W
Q	reactive power	W, Var
D	distortion power	W
φ	phase displacement	rad
9	load angle	rad
λ	power factor, $\lambda = P/S$, $\lambda \cos \varphi^{(1)}$	1
δ	loss angle	rad
d	loss factor, $d = \tan \delta$	1
Z	impedance	Ω
Y	admittance	S
R	resistance	Ω
G	conductance	S
X	reactance	Ω
В	susceptance	S
γ	impedance angle, γ = arctan X/R	rad

*Table 2-4*Numerical and proportional relationships

Symbol	Quantity	SI unit
$\overline{\eta}$	efficiency	1
S	slip	1
р	number of pole-pairs	1
w, N	number of turns	1
ü	transformation ratio	1
m	number of phases and conductors	1
γ	amplitude factor	1
K	overvoltage factor	1
ν	ordinal number of a periodic component	1
S	wave content	1
q	fundamental wave content	1
k	harmonic content, distortion factor	1
ζ	increase in resistance due to skin effect, $\zeta = R_{\sim}/R$	1

¹⁾ Valid only for sinusoidal voltage and current.

2.2 Alternating-current quantities

With an alternating current, the instantaneous value of the current changes its direction as a function of time i = f(t). If this process takes place periodically with a period of duration T, this is a periodic alternating current. If the variation of the current with respect to time is then sinusoidal, one speaks of a sinusoidal alternating current.